Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
PLoS Pathog ; 20(3): e1012129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547321

RESUMO

We recently identified two virulence-associated small open reading frames (sORF) of Yersinia pestis, named yp1 and yp2, and null mutants of each individual genes were highly attenuated in virulence. Plague vaccine strain EV76 is known for strong reactogenicity, making it not suitable for use in humans. To improve the immune safety of EV76, three mutant strains of EV76, Δyp1, Δyp2, and Δyp1&yp2 were constructed and their virulence attenuation, immunogenicity, and protective efficacy in mice were evaluated. All mutant strains were attenuated by the subcutaneous (s.c.) route and exhibited more rapid clearance in tissues than the parental strain EV76. Under iron overload conditions, only the mice infected with EV76Δyp1 survived, accompanied by less draining lymph nodes damage than those infected by EV76. Analysis of cytokines secreted by splenocytes of immunized mice found that EV76Δyp2 induced higher secretion of multiple cytokines including TNF-α, IL-2, and IL-12p70 than EV76. On day 42, EV76Δyp2 or EV76Δyp1&yp2 immunized mice exhibited similar protective efficacy as EV76 when exposed to Y. pestis 201, both via s.c. or intranasal (i.n.) routes of administration. Moreover, when exposed to 200-400 LD50 Y. pestis strain 201Δcaf1 (non-encapsulated Y. pestis), EV76Δyp2 or EV76Δyp1&yp2 are able to afford about 50% protection to i.n. challenges, significantly better than the protection afforded by EV76. On 120 day, mice immunized with EV76Δyp2 or EV76Δyp1&yp2 cleared the i.n. challenge of Y. pestis 201-lux as quickly as those immunized with EV76, demonstrating 90-100% protection. Our results demonstrated that deletion of the yp2 gene is an effective strategy to attenuate virulence of Y. pestis EV76 while improving immunogenicity. Furthermore, EV76Δyp2 is a promising candidate for conferring protection against the pneumonic and bubonic forms of plague.


Assuntos
Vacina contra a Peste , Vacinas , Yersinia pestis , Humanos , Animais , Camundongos , Yersinia pestis/genética , Fases de Leitura Aberta , Vacina contra a Peste/genética , Citocinas/genética
2.
Burns Trauma ; 12: tkad054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444636

RESUMO

Background: The breakdown of intestinal barrier integrity occurs after severe burn injury and is responsible for the subsequent reactions of inflammation and oxidative stress. A new protective strategy for the intestinal barrier is urgently needed due to the limitations of the traditional methods. Recently, the application of nanoparticles has become one of the promising therapies for many inflammation-related diseases or oxidative damage. Herein, we developed a new anti-inflammatory and antioxidant nanoparticle named luminol-conjugated cyclodextrin (LCD) and aimed to evaluate its protective effects in severe burn-induced intestinal injury. Methods: First, LCD nanoparticles, engineered with covalent conjugation between luminol and ß-cyclodextrin (ß-CD), were synthesized and examined. Then a mouse burn model was successfully established before the mouse body weight, intestinal histopathological manifestation, permeability, tight junction (TJ) expression and pro-inflammatory cytokines were determined in different groups. The proliferation, apoptosis, migration and reactive oxygen species (ROS) of intestinal epithelial cells (IECs) were assessed. Intraepithelial lymphocytes (IELs) were isolated and cultured for analysis by flow cytometry. Results: LCD nanoparticle treatment significantly relieved the symptoms of burn-induced intestinal injury in the mouse model, including body weight loss and intestinal permeability abnormalities. Moreover, LCD nanoparticles remarkably recovered the mechanical barrier of the intestine after severe burn, renewed TJ structures, promoted IEC proliferation and migration, and inhibited IEC apoptosis. Mechanistically, LCD nanoparticles dramatically alleviated pro-inflammation factors (tumor necrosis factor-α, IL-17A) and ROS accumulation, which could be highly involved in intestinal barrier disruption. Furthermore, an increase in IL-17A and the proportion of IL-17A+Vγ4+ γδ T subtype cells was also observed in vitro in LPS-treated Vγ4+ γδ T cells, but the use of LCD nanoparticles suppressed this increase. Conclusions: Taken together, these findings demonstrate that LCD nanoparticles have the protective ability to ameliorate intestinal barrier disruption and provide a therapeutic intervention for burn-induced intestinal injury.

3.
Neurol Sci ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280087

RESUMO

INTRODUCTION: Neuroinfection is associated with the deposition of amyloid-beta (Aß) peptides, and subsequent decrease in cerebrospinal fluid (CSF) amyloid levels. However, whether autoimmune encephalitis involves extracellular deposition of Aß peptides in the brain is unreported. METHODS: We examined CSF amyloid and tau values in adults with anti-N-methyl-D-aspartate receptor encephalitis (NMDAR-E). Forty-two patients with NMDAR-E, 35 patients with viral and bacterial neuroinfections, and 16 controls were included. We measured CSF Aß1-42 (cAß1-42), Aß1-40 (cAß1-40), t-Tau (ct-Tau), and p-Tau181 (cp-Tau181) levels and assessed their efficacies regarding differential diagnosis and predicting prognosis. RESULTS: NMDAR-E patients had lower cAß1-42 levels; however, they were higher than those of patients with bacterial meningitis. ct-Tau levels in NMDAR-E patients were lower than those in patients with neuroinfections. No changes were observed in controls. cAß1-42 and ct-Tau were combined as an excellent marker to distinguish NMDAR-E from neuroinfections. cAß1-42 levels in NMDAR-E patients were positively correlated with Montreal Cognitive Assessment scores. We observed an inverse relationship between cAß1-42 levels and modified Rankin Scale scores. Patients with poor outcomes exhibited low cAß1-42 levels and high levels of several blood parameters. cAß1-42 was the highest quality biomarker for assessing NMDAR-E prognosis. Correlations were found between cAß1-42 and some inflammatory indicators. CONCLUSION: cAß1-42 was decreased in NMDAR-E patients. cAß1-42 levels indicated NMDAR-E severity and acted as a biomarker for its prognosis. Combining cAß1-42 and ct-Tau levels could serve as a novel differential diagnostic marker for NMDAR-E.

4.
Front Cell Infect Microbiol ; 13: 1288371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089818

RESUMO

Yersinia pestis, the causative agent of plague, is a genetically monomorphic bacterial pathogen that evolved from Yersinia pseudotuberculosis approximately 7,400 years ago. We observed unusually frequent mutations in Y. pestis YPO0623, mostly resulting in protein translation termination, which implies a strong natural selection. These mutations were found in all phylogenetic lineages of Y. pestis, and there was no apparent pattern in the spatial distribution of the mutant strains. Based on these findings, we aimed to investigate the biological function of YPO0623 and the reasons for its frequent mutation in Y. pestis. Our in vitro and in vivo assays revealed that the deletion of YPO0623 enhanced the growth of Y. pestis in nutrient-rich environments and led to increased tolerance to heat and cold shocks. With RNA-seq analysis, we also discovered that the deletion of YPO0623 resulted in the upregulation of genes associated with the type VI secretion system (T6SS) at 26°C, which probably plays a crucial role in the response of Y. pestis to environment fluctuations. Furthermore, bioinformatic analysis showed that YPO0623 has high homology with a PLP-dependent aspartate aminotransferase in Salmonella enterica, and the enzyme activity assays confirmed its aspartate aminotransferase activity. However, the enzyme activity of YPO0623 was significantly lower than that in other bacteria. These observations provide some insights into the underlying reasons for the high-frequency nonsense mutations in YPO0623, and further investigations are needed to determine the exact mechanism.


Assuntos
Peste , Yersinia pestis , Yersinia pseudotuberculosis , Humanos , Yersinia pestis/genética , Yersinia pestis/metabolismo , Códon sem Sentido/metabolismo , Aspartato Aminotransferases , Filogenia , Peste/microbiologia , Yersinia pseudotuberculosis/genética
5.
Microorganisms ; 11(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004812

RESUMO

The bacterium Yersinia pestis has developed various strategies to sense and respond to the complex stresses encountered during its transmission and pathogenic processes. PurR is a common transcriptional regulator of purine biosynthesis among microorganisms, and it modulates the transcription level of the pur operon to suppress the production of hypoxanthine nucleotide (IMP). This study aims to understand the functions and regulatory mechanisms of purR in Y. pestis. Firstly, we constructed a purR knockout mutant of Y. pestis strain 201 and compared certain phenotypes of the null mutant (201-ΔpurR) and the wild-type strain (201-WT). The results show that deleting purR has no significant impact on the biofilm formation, growth rate, or viability of Y. pestis under different stress conditions (heat and cold shock, high salinity, and hyperosmotic pressure). Although the cytotoxicity of the purR knockout mutant on HeLa and 293 cells is reduced, the animal-challenging test found no difference of the virulence in mice between 201-ΔpurR and 201-WT. Furthermore, RNA-seq and EMSA analyses demonstrate that PurR binds to the promoter regions of at least 15 genes in Y. pestis strain 201, primarily involved in purine biosynthesis, along with others not previously observed in other bacteria. Additionally, RNA-seq results suggest the presence of 11 potential operons, including a newly identified co-transcriptional T6SS cluster. Thus, aside from its role as a regulator of purine biosynthesis, purR in Y. pestis may have additional regulatory functions.

6.
Front Oncol ; 13: 1159197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746250

RESUMO

Background: The stomach is one of the most deformable organs. Its shape can be easily affected by breathing movements, and daily diet, and it also varies when the body position is different. The susceptibility of stomach has made it challenging to treat gastric cancer using the conventional image-guided radiotherapy, i.e., the techniques based on kilovoltage X-ray imaging. The magnetic resonance imaging guided radiotherapy (MRgRT) is usually implemented using a hybrid system MR-LINAC. It is feasible to implement adaptive radiotherapy using MR-LINAC for deformable organs such as stomach. In this case report, we present our clinical experience to treat a gastric cancer patient using MR-LINAC. Case description: The patient is a 58-year-old male who started having black stools with no apparent cause a year ago. Gastroscopy result showed pancreatic cancer, pathology: adenocarcinoma on gastric cancer biopsy, adenocarcinoma on gastric body minor curvature biopsy. The patient was diagnosed with gastric cancer (adenocarcinoma, cTxN+M1, stage IV, HER-2 positive). The patient was treated in 25 fractions with radiotherapy using MR-LINAC with online adaptive treatment plans daily. The target area in daily MR images varied considerably when compared with the target area on the CT simulation images. During the course of treatment, there have even been instances where the planned target area where the patient received radiotherapy did not cover the lesion of the day. Conclusion: Online adaptive MRgRT can be a meaningful innovation for treating malignancies in the upper abdomen. The results in the current study are promising and are indicative for further optimizing online adaptive MRgRT in patients with inoperable tumors of the upper abdomen.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37602146

RESUMO

Since its first identification in 1894 during the third pandemic in Hong Kong, there has been significant progress of understanding the lifestyle of Yersinia pestis, the pathogen that is responsible for plague. Although we now have some understanding of the pathogen's physiology, genetics, genomics, evolution, gene regulation, pathogenesis and immunity, there are many unknown aspects of the pathogen and its disease development. Here, we focus on some of the knowns and unknowns relating to Y. pestis and plague. We notably focus on some key Y. pestis physiological and virulence traits that are important for its mammal-flea-mammal life cycle but also its emergence from the enteropathogen Yersinia pseudotuberculosis. Some aspects of the genetic diversity of Y. pestis, the distribution and ecology of plague as well as the medical countermeasures to protect our population are also provided. Lastly, we present some biosafety and biosecurity information related to Y. pestis and plague.

8.
Commun Biol ; 6(1): 847, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582843

RESUMO

Plague, caused by Yersinia pestis, is a zoonotic disease that can reemerge and cause outbreaks following decades of latency in natural plague foci. However, the genetic diversity and spread pattern of Y. pestis during these epidemic-silent cycles remain unclear. In this study, we analyze 356 Y. pestis genomes isolated between 1952 and 2016 in the Yunnan Rattus tanezumi plague focus, China, covering two epidemic-silent cycles. Through high-resolution genomic epidemiological analysis, we find that 96% of Y. pestis genomes belong to phylogroup 1.ORI2 and are subdivided into two sister clades (Sublineage1 and Sublineage2) characterized by different temporal-spatial distributions and genetic diversity. Most of the Sublineage1 strains are isolated from the first epidemic-silent cycle, while Sublineage2 strains are predominantly from the second cycle and revealing a west to east spread. The two sister clades evolved in parallel from a common ancestor and independently lead to two separate epidemics, confirming that the pathogen responsible for the second epidemic following the silent interval is not a descendant of the causative strain of the first epidemic. Our results provide a mechanism for defining epidemic-silent cycles in natural plague foci, which is valuable in the prevention and control of future plague outbreaks.


Assuntos
Epidemias , Peste , Yersinia pestis , Animais , Ratos , Peste/epidemiologia , Yersinia pestis/genética , China/epidemiologia , Genótipo , Genômica
9.
PLoS Negl Trop Dis ; 17(8): e0011527, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549110

RESUMO

Plague, one of the most devastating infectious diseases in human history, is caused by the bacterium Yersinia pestis. Since the 1950s, the Dehong Dai-Jingpo Autonomous Prefecture (DH) in Yunnan Province, China, has recorded plague outbreaks that have resulted in 1,153 human cases and 379 deaths. The genetic diversity and transmission characteristics of Y. pestis strains in this region remain unknown. Here, we performed high-resolution genomic epidemiological analysis of 175 Y. pestis strains isolated from five counties and 19 towns in DH between 1953 and 2007. Phylogenetic analysis revealed that most DH strains were located in lineage 1.ORI2, which could be further subdivided into seven sub-phylogroups (SPG1-SPG7). The dominant sub-phylogroups of Y. pestis in DH varied during different periods and presented a population shift. Genomic evidence showed that plague might have emerged from the southwest of DH (e.g., Longchuan or Ruili counties) or its bordering countries, and subsequently spread to the northeast in multiple waves between 1982 and 2007. Our study infers a fine-scale phylogeny and spread pattern of the DH Y. pestis population, which extends our knowledge regarding its genetic diversity and provides clues for the future prevention and control of plague in this region.


Assuntos
Peste , Yersinia pestis , Humanos , Peste/epidemiologia , Peste/microbiologia , Filogenia , China/epidemiologia , Genômica
10.
Microbiol Spectr ; 11(4): e0046023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458592

RESUMO

Increasing evidence shows that protein lysine acetylation is involved in almost every aspect of cellular physiology in bacteria. Yersinia pestis is a flea-borne pathogen responsible for millions of human deaths in three global pandemics. However, the functional role of lysine acetylation in this pathogen remains unclear. Here, we found more acetylated proteins and a higher degree of acetylation in Y. pestis grown under mammalian host (Mh) conditions than under flea vector (Fv) conditions, suggesting that protein acetylation could significantly change during fleabite transmission. Comparative acetylome analysis of mutants of YfiQ and CobB, the major acetyltransferase and deacetylase of Y. pestis, respectively, identified 23 YfiQ-dependent and 315 CobB-dependent acetylated proteins. Further results demonstrated that acetylation of Lys73 of the SlyA protein, a MarR-family transcriptional regulator, inhibits its binding to the promoter of target genes, including hmsT that encodes diguanylate cyclase responsible for the synthesis of c-di-GMP, and significantly enhances biofilm formation of Y. pestis. Our study presents the first extensive acetylome data of Y. pestis and a critical resource for the functional study of lysine acetylation in this pathogen. IMPORTANCE Yersinia pestis is the etiological agent of plague, historically responsible for three global pandemics. The 2017 plague epidemic in Madagascar was a reminder that Y. pestis remains a real threat in many parts of the world. Plague is a zoonotic disease that primarily infects rodents via fleabite, and transmission of Y. pestis from infected fleas to mammals requires rapid adaptive responses to adverse host environments to establish infection. Our study provides the first global profiling of lysine acetylation derived from mass spectrometry analysis in Y. pestis. Our data set can serve as a critical resource for the functional study of lysine acetylation in Y. pestis and provides new molecular insight into the physiological role of lysine acetylation in proteins. More importantly, we found that acetylation of Lys73 of SlyA significantly promotes biofilm formation of Y. pestis, indicating that bacteria can use lysine acetylation to fine-tune the expression of genes to improve adaptation.


Assuntos
Peste , Sifonápteros , Yersinia pestis , Animais , Humanos , Yersinia pestis/metabolismo , Peste/microbiologia , Lisina/metabolismo , Acetilação , Sifonápteros/microbiologia , Biofilmes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mamíferos
11.
Front Cell Infect Microbiol ; 13: 1174510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305418

RESUMO

Plague caused by Yersinia pestis remains a public health threat worldwide. Because multidrug-resistant Y. pestis strains have been found in both humans and animals, phage therapy has attracted increasing attention as an alternative strategy against plague. However, phage resistance is a potential drawback of phage therapies, and the mechanism of phage resistance in Y. pestis is yet to be investigated. In this study, we obtained a bacteriophage-resistant strain of Y. pestis (S56) by continuously challenging Y. pestis 614F with the bacteriophage Yep-phi. Genome analysis identified three mutations in strain S56: waaA* (9-bp in-frame deletion 249GTCATCGTG257), cmk* (10-bp frameshift deletion 15CCGGTGATAA24), and ail* (1-bp frameshift deletion A538). WaaA (3-deoxy-D-manno-octulosonic acid transferase) is a key enzyme in lipopolysaccharide biosynthesis. The waaA* mutation leads to decreased phage adsorption because of the failure to synthesize the lipopolysaccharide core. The mutation in cmk (encoding cytidine monophosphate kinase) increased phage resistance, independent of phage adsorption, and caused in vitro growth defects in Y. pestis. The mutation in ail inhibited phage adsorption while restoring the growth of the waaA null mutant and accelerating the growth of the cmk null mutant. Our results confirmed that mutations in the WaaA-Cmk-Ail cascade in Y. pestis contribute to resistance against bacteriophage. Our findings help in understanding the interactions between Y. pestis and its phages.


Assuntos
Bacteriófagos , Peste , Yersinia pestis , Animais , Humanos , Yersinia pestis/genética , Lipopolissacarídeos , Mutação , Bacteriófagos/genética
12.
Microbiol Spectr ; 11(4): e0217022, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37260413

RESUMO

Vibrio parahaemolyticus is a marine bacterium coming from estuarine environments, where the migratory birds can easily be colonized by V. parahaemolyticus. Migratory birds may be important reservoirs of V. parahaemolyticus by growth and re-entry into the environment. To further explore the spreading mechanism of V. parahaemolyticus among marine life, human beings, and migratory birds, we aimed to investigate the characteristics of the genetic diversity, antimicrobial resistance, virulence genes, and a potentially informative gene marker of V. parahaemolyticus isolated from migratory birds in China. This study recovered 124 (14.55%) V. parahaemolyticus isolates from 852 fecal and environmental (water) samples. All of the 124 strains were classified into 85 known sequence types (STs), of which ST-2738 was most frequently identified. Analysis of the population structure using whole-genome variation of the 124 isolates illustrated that they grouped into 27 different clonal groups (CGs) belonging to the previously defined geographical populations VppX and VppAsia. Even though these genomes have high diversity, an extra copy of tRNA-Gly was presented in all migratory bird-carried V. parahaemolyticus isolates, which could be used as a potentially informative marker of the V. parahaemolyticus strains derived from birds. Antibiotic sensitivity experiments revealed that 47 (37.10%) isolates were resistant to ampicillin. Five isolates harbored the plasmid-mediated quinolone resistance (PMQR) gene qnrD, which has not previously been identified in this species. The investigation of antibiotic resistance provides the basic knowledge to further evaluate the risk of enrichment and reintroduction of pathogenic V. parahaemolyticus strains in migratory birds. IMPORTANCE The presence of V. parahaemolyticus in migratory birds' fecal samples implies that the human pathogenic V. parahaemolyticus strains may also potentially infect birds and thus pose a risk for zoonotic infection and food safety associated with re-entry into the environment. Our study firstly highlights the extra copy of tRNA as a potentially informative marker for identifying the bird-carried V. parahaemolyticus strains. Also, we firstly identify the plasmid-mediated quinolone resistance (PMQR) gene qnrD in V. parahaemolyticus. To further evaluate the risk of enrichment and reintroduction of pathogenic strains carried by migratory birds, we suggest conducting estuarine environmental surveillance to monitor the antibiotic resistance and virulence factors of bird-carried V. parahaemolyticus isolates.


Assuntos
Quinolonas , Vibrioses , Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Quinolonas/farmacologia , Antibacterianos/farmacologia , Ampicilina , Plasmídeos/genética , Vibrioses/microbiologia
13.
Front Cell Infect Microbiol ; 13: 1185803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260699

RESUMO

Chlamydia psittaci is the pathogen of psittacosis and infects a wide range of birds and even humans. Human infection occurs most commonly in those with a history of contact with birds or poultry. We describe a case of psittacosis in a human immunodeficiency virus infected patient in Zhejiang Province for the first time. C. psittaci infection was confirmed by nested polymerase chain reaction (PCR) and Real-Time PCR. Phylogenetic analysis revealed that the sequences from the patient's samples clustered with genotype A in the same branch. Our study highlights the possibility of diagnosing psittacosis in patients with a chronic disease such as HIV-infected patients, and should increase awareness and surveillance of psittacosis in China.


Assuntos
Chlamydophila psittaci , Infecções por HIV , Psitacose , Animais , Humanos , Psitacose/complicações , Psitacose/diagnóstico , Psitacose/epidemiologia , Chlamydophila psittaci/genética , Filogenia , Infecções por HIV/complicações , Aves/genética , Reação em Cadeia da Polimerase em Tempo Real
14.
Front Oncol ; 13: 1172135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361583

RESUMO

Objective: We proposed a scheme for automatic patient-specific segmentation in Magnetic Resonance (MR)-guided online adaptive radiotherapy based on daily updated, small-sample deep learning models to address the time-consuming delineation of the region of interest (ROI) in the adapt-to-shape (ATS) workflow. Additionally, we verified its feasibility in adaptive radiation therapy for esophageal cancer (EC). Methods: Nine patients with EC who were treated with an MR-Linac were prospectively enrolled. The actual adapt-to-position (ATP) workflow and simulated ATS workflow were performed, the latter of which was embedded with a deep learning autosegmentation (AS) model. The first three treatment fractions of the manual delineations were used as input data to predict the next fraction segmentation, which was modified and then used as training data to update the model daily, forming a cyclic training process. Then, the system was validated in terms of delineation accuracy, time, and dosimetric benefit. Additionally, the air cavity in the esophagus and sternum were added to the ATS workflow (producing ATS+), and the dosimetric variations were assessed. Results: The mean AS time was 1.40 [1.10-1.78 min]. The Dice similarity coefficient (DSC) of the AS model gradually approached 1; after four training sessions, the DSCs of all ROIs reached a mean value of 0.9 or more. Furthermore, the planning target volume (PTV) of the ATS plan showed a smaller heterogeneity index than that of the ATP plan. Additionally, V5 and V10 in the lungs and heart were greater in the ATS+ group than in the ATS group. Conclusion: The accuracy and speed of artificial intelligence-based AS in the ATS workflow met the clinical radiation therapy needs of EC. This allowed the ATS workflow to achieve a similar speed to the ATP workflow while maintaining its dosimetric advantage. Fast and precise online ATS treatment ensured an adequate dose to the PTV while reducing the dose to the heart and lungs.

15.
Heliyon ; 9(5): e16353, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37251856

RESUMO

Rapid and ultrasensitive microbial detection in actual samples have challenges because of target pathogen diversity and low abundance. In this study, we attempted to capture and concentrate multiple pathogens by combining magnetic beads with polyclonal antibodies against a universal antigen of ompA, LAMOA-1, before further detection. A protein sequence consisting of 241 amino acids with spatial conformation similar to E. coli ompA was identified and expressed as a recombinant protein in prokaryotes according to the results of sequence alignment among 432 sequences of ompA belonging to intestinal bacteria from gram-negative bacteria. Purified from immunized rabbits, the anti-LAMOA-1 antibody was shown to effectively recognize 12 foodborne bacterial species. Antibody-conjugated beads were used to concentrate the bacteria when the bacterial concentration in artificially contaminated samples is between 10 and 100 CFU/mL, which shortens detection duration by 8-24 h. The enrichment strategy is potentially beneficial for detection of foodborne pathogens.

16.
Front Neurol ; 14: 1083752, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908596

RESUMO

Purpose: This retrospective study aimed to investigate the relationship between fibrinogen-to-albumin ratio percentage (FARP) and disease severity and prognosis in patients with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis. Methods: Medical records and clinical characteristics from 181 patients with anti-NMDAR encephalitis were included. The modified Rankin Scale (mRS) was used to analyze disease severity and prognosis at admission and discharge, and correlations between FARP, disease severity, and prognosis were analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the efficiency of FARP in assessing disease severity and prognosis. Results: Compared to the control group, patients with anti-NMDAR encephalitis had higher fibrinogen (Fib) levels (P < 0.001), neutrophil counts (P < 0.001), and FARP levels (P < 0.001) but had lower albumin levels (P = 0.003). The enrolled patients were divided into mild-to-moderate and severe groups according to their mRS scores both at admission and discharge. FARP levels were significantly elevated in the severe group compared to the mild-to-moderate group among patients with anti-NMDAR encephalitis both at admission and discharge (admission 6.0 vs. 7.40, P < 0.001; discharge 6.43 vs. 8.18, P<0.001). Indeed, the mRS scores at admission (56 vs. 26%, P < 0.001) and discharge (26 vs. 11%, P = 0.006) in the high FARP group were significantly higher than those in the low FARP group. Furthermore, FARP was positively correlated with the mRS scores at admission (r = 0.383, P < 0.001) and discharge (r =0.312, P < 0.001). In the multivariate analysis, FARP was significantly associated with disease severity (odds ratio [OR] = 1.416, 95% confidence interval [CI] = 1.117-1.795, P = 0.004) and prognosis (OR = 1.252, 95% CI = 1.010-1.552, P = 0.040). FARP-based ROC curves predicted disease severity, with a sensitivity of 0.756, a specificity of 0.626, and an area under the ROC curve of 0.722 (95% CI = 0.648-0.796, P < 0.001*). The ROC curve predicted the disease prognosis with a sensitivity of 0.703, a specificity of 0.667, and an area under the ROC curve of 0.723 (95% CI = 0.629-0.817, P < 0.001*). Conclusion: Our results indicate that FARP is a novel predictive marker for disease severity and prognosis of anti-NMDAR encephalitis.

17.
Front Neurol ; 13: 1022785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457866

RESUMO

Purpose: We aimed to explore the difference in coagulation function between healthy individuals and patients with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis and its relationship with disease severity. Methods: We retrospectively compared coagulation function in 161 patients with first-attack anti-NMDAR encephalitis and 178 healthy individuals. The association between D-dimer levels and disease severity was analyzed using binary logistic regression. Receiver operating characteristic (ROC) curves were used to analyze the predictive value of D-dimer levels for the severity of anti-NMDAR encephalitis. Results: Compared to control individuals, patients with anti-NMDAR encephalitis had higher D-dimer levels (median 0.14 vs. 0.05 mg/L, p < 0.001), blood white blood cell (WBC) count (median 8.54 vs. 5.95 × 109/L, p < 0.001), and neutrophil count (median 6.14 vs. 3.1 × 109/L, p < 0.001). D-dimers (median 0.22 vs. 0.10 mg/L, p < 0.001), blood WBC count (median 9.70 vs. 7.70 × 109/L, p < 0.001), neutrophil count (median 7.50 vs. 4.80 × 109/L, p < 0.001), and C-reactive protein (median 2.61 vs. 1.50 mg/l, p = 0.017) were higher; however, eosinophils (median 0.02 vs. 0.06 × 109/L, p < 0.001), and blood calcium (median 2.26 vs. 2.31 mmol/L, p = 0.003) were lower in patients with severe forms of anti-NMDAR encephalitis than in those with mild to moderate forms, and were associated with initial modified Rankin Scale scores. Multivariate analysis showed that D-dimer levels were significantly associated with severity [odds ratio =2.631, 95% confidence interval (CI) = 1.018-6.802, p = 0.046]. The ROC curve was used to analyze the predictive value of D-dimer levels for disease severity. The area under the curve was 0.716 (95% CI = 0.64-0.80, p < 0.001), and the best cut-off value was D-dimer = 0.147 mg/L (sensitivity 0.651; specificity, 0.705). Conclusion: Serum D-dimer and neutrophil levels were independent predictors of disease severity in patients with first-attack anti-NMDAR encephalitis.

18.
Cancer Biol Ther ; 23(1): 1-14, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36245088

RESUMO

Application of bone marrow-derived mesenchymal stem cell-derived exosomes (BMSC-exos) in cancer treatment has been widely studied. Here, we elaborated the function of BMSC-exos containing microRNA-187 (miR-187) in prostate cancer. Differentially expressed miRs and genes were screened with microarray analysis. The relationship between CD276 and miR-187 in prostate cancer was evaluated. Following miR-187 mimic/inhibitor or CD276 overexpression transfection, their actions in prostate cancer cell biological processes were analyzed. Prostate cancer cells were then exposed to BMSC-exos that were treated with either miR-187 mimic/inhibitor or CD276 overexpression for pinpointing the in vitro and in vivo effects of exosomal miR-187. miR-187 was poorly expressed while CD276 was significantly upregulated in prostate cancer. Additionally, restoring miR-187 inhibited the prostate cancer cell malignant properties by targeting CD276. Upregulation of miR-187 led to declines in CD276 expression and the JAK3-STAT3-Slug signaling pathway. Next, BMSC-exos carrying miR-187 contributed to repressed cell malignant features as well as limited tumorigenicity and tumor metastasis. Collectively, this study demonstrated that BMSC-derived exosomal miR-187 restrained prostate cancer by reducing CD276/JAK3-STAT3-Slug axis.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Neoplasias da Próstata , Antígenos B7/metabolismo , Antígenos B7/farmacologia , Medula Óssea/metabolismo , Proliferação de Células/genética , Exossomos/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/patologia
19.
Front Psychol ; 13: 973654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092050

RESUMO

Alcohol use disorder (AUD) is one of the most common substance use disorders contributing to both behavioral and cognitive impairments in patients with AUD. Recent neuroimaging studies point out that AUD is a typical disorder featured by altered functional connectivity. However, the details about how voxel-wise functional coordination remain unknown. Here, we adopted a newly proposed method named functional connectivity density (FCD) to depict altered voxel-wise functional coordination in AUD. The novel functional imaging technique, FCD, provides a comprehensive analytical method for brain's "scale-free" networks. We applied resting-state functional MRI (rs-fMRI) toward subjects to obtain their FCD, including global FCD (gFCD), local FCD (lFCD), and long-range FCD (lrFCD). Sixty-one patients with AUD and 29 healthy controls (HC) were recruited, and patients with AUD were further divided into alcohol-related cognitive impairment group (ARCI, n = 11) and non-cognitive impairment group (AUD-NCI, n = 50). All subjects were asked to stay stationary during the scan in order to calculate the resting-state gFCD, lFCD, and lrFCD values, and further investigate the abnormal connectivity alterations among AUD-NCI, ARCI, and HC. Compared to HC, both AUD groups exhibited significantly altered gFCD in the left inferior occipital lobe, left calcarine, altered lFCD in right lingual, and altered lrFCD in ventromedial frontal gyrus (VMPFC). It is notable that gFCD of the ARCI group was found to be significantly deviated from AUD-NCI and HC in left medial frontal gyrus, which changes probably contributed by the impairment in cognition. In addition, no significant differences in gFCD were found between ARCI and HC in left parahippocampal, while ARCI and HC were profoundly deviated from AUD-NCI, possibly reflecting a compensation of cognition impairment. Further analysis showed that within patients with AUD, gFCD values in left medial frontal gyrus are negatively correlated with MMSE scores, while lFCD values in left inferior occipital lobe are positively related to ADS scores. In conclusion, patients with AUD exhibited significantly altered functional connectivity patterns mainly in several left hemisphere brain regions, while patients with AUD with or without cognitive impairment also demonstrated intergroup FCD differences which correlated with symptom severity, and patients with AUD cognitive impairment would suffer less severe alcohol dependence. This difference in symptom severity probably served as a compensation for cognitive impairment, suggesting a difference in pathological pathways. These findings assisted future AUD studies by providing insight into possible pathological mechanisms.

20.
Nat Commun ; 13(1): 4526, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927280

RESUMO

Plague has caused three worldwide pandemics in history, including the Black Death in medieval ages. Yersinia pestis, the etiological agent of plague, has evolved a powerful arsenal to disrupt host immune defenses during evolution from enteropathogenic Y. pseudotuberculosis. Here, we find that two functionally redundant E3 ligase of Y. pestis, YspE1 and YspE2, can be delivered via type III secretion injectisome into host cytosol where they ubiquitinate multiple guanylate-binding proteins (GBPs) for proteasomal degradation. However, Y. pseudotuberculosis has no such capability due to lacking functional YspE1/2 homologs. YspE1/2-mediated GBP degradations significantly promote the survival of Y. pestis in macrophages and strongly inhibit inflammasome activation. By contrast, Gbpchr3-/-, chr5-/- macrophages exhibit much lowered inflammasome activation independent of YspE1/2, accompanied with an enhanced replication of Y. pestis. Accordingly, Gbpchr3-/-, chr5-/- mice are more susceptible to Y. pestis. We demonstrate that Y. pestis utilizes E3 ligases to subvert GBP-mediated host defense, which appears to be newly acquired by Y. pestis during evolution.


Assuntos
Peste , Yersinia pestis , Infecções por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Animais , Inflamassomos/metabolismo , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Yersinia pestis/genética , Yersinia pestis/metabolismo , Yersinia pseudotuberculosis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...